Reliable Operation
The Non-IBC Layflat Controller uses the same microprocessor based platform as the patented IS-IBC1® control system. The system was designed to provide a low cost method of monitoring or controlling the layflat on non-IBC applications. Each unit contains the highest quality components available which drastically reduces downtime. There are very few moving parts which helps keep spare parts costs to a minimum.

Automated Startup and Easy Sizing
The system has two operation modes: semi-automatic and automatic. In semi-automatic mode, selecting either the inflate or deflate button is checked against layflat target. The requested operation (inflating or deflating) will continue until the layflat is near the target and then it will stop. In automatic mode, it will continue to adjust as needed to maintain layflat.

Faster Response Time
The unit comes standard with two sensors but is able to handle up to four sensors. The sensors are mounted 3-4 feet above the frost line for immediate response time to bubble movement. The system displays the target and actual layflat.

Safer Operation
There is no need to disconnect compressed air connections at the die. Typically the air connections are connected to high pressure lines. By eliminating the need to connect and disconnect the air lines each time the bubble requires air, the DRJ Non-IBC system allows for much safer operator intervention.

Excellent Customer Care
D.R. Joseph is committed to a high standard of excellence. Our service is unparalleled in the industry and we take pride in our ability to find solutions, not just answers for all of our customers.

Additional Benefits
- Faster Changeovers
- Reduced Scrap
- Higher Yields
- Reduces or Eliminate Trim
- User Friendly
- Excellent Process Reporting
Standard Features

Layflat and Sensor Trending Capabilities
The layflat deviation and sensor position trends are provided in 10 minute, 1 hour and 12 hour time windows. The 10 minute and 1 hour trends also have a zoom feature to provide greater resolution. The layflat deviation trends include user configurable process limit indicators to allow fast confirmation that the process has stayed within specified limits.

Mono-Layer Production Rate Calculator
Operators can easily calculate nip speed and extruder speed adjustments needed to change from one job to another. Screw speed calculations are based on single screw systems.

Configurable Layflat and Bubble Break Outputs
Isolated normally open and normally closed outputs are provided to control up to four separate devices for both the layflat and bubble break conditions.

Statistical Analysis
Operational statistics are provided for layflat control performance. Statistics include minimum, maximum, average, standard deviation and 3 sigma (this measurement tells you that 99.73% of the layflat was within the 3 sigma value - also known as process capability). You also get a real time frequency distribution of the layflat to allow you to see if process variation is centered around the layflat target or skewed low or high. This is a good quality assurance indicator.

Optional Features

Pneumatics Options
The system supports user supplied pneumatic controls, the Kundig TubAir pneumatic controls and a D. R. Joseph supplied pneumatic controller. The DRJ supplied controller includes fast fill, adjustable slow fill and adjustable exhaust.

Modem
An optional modem can be installed to allow for DRJ technicians to connect to the system and perform remote diagnostics.

Kundig Interface
An optional Kundig layflat measuring bar may also be incorporated into the system and installed just before the winders. The Kundig bar provides an easy means for calibrating the layflat sensors by the simple push of a button. Trending from the Kundig measurement is also incorporated into the system.

Shop Floor Integration
The nonIBC system supports both RS232 and Ethernet interfaces. RS232 standard protocols are Modbus RTU and Modbus ASCII. Ethernet standard protocols are Modbus/TCP and Modbus/UDP. With optional protocol converter, practically any non-proprietary industrial protocol can be supported.